博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
初步认识Hive
阅读量:5236 次
发布时间:2019-06-14

本文共 2702 字,大约阅读时间需要 9 分钟。

初步认识Hive

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Hive 并不适合那些需要低延迟的应用,例如,联机事务处理(OLTP)。Hive 查询操作过程严格遵守Hadoop MapReduce 的作业执行模型,Hive 将用户的HiveQL 语句通过解释器转换为MapReduce 作业提交到Hadoop 集群上,Hadoop 监控作业执行过程,然后返回作业执行结果给用户。Hive 并非为联机事务处理而设计,Hive 并不提供实时的查询和基于行级的数据更新操作。Hive 的最佳使用场合是大数据集的批处理作业,例如,网络日志分析。

 

Hive 的设计特点如下:

● 支持索引,加快数据查询。

● 不同的存储类型,例如,纯文本文件、HBase 中的文件。

● 将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。

● 可以直接使用存储在Hadoop 文件系统中的数据。

● 内置大量用户函数UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展UDF 函数来完成内置函数无法实现的操作。

● 类SQL 的查询方式,将SQL 查询转换为MapReduce job Hadoop集群上执行。

Hive和传统数据库的比较

基本数据类型

hive支持多种不同长度的整型和浮点型数据,支持布尔型,也支持无长度限制的字符串类型。例如:TINYINTSMALINTBOOLEANFLOAT

DOUBLESTRING等基本数据类型。这些基本数据类型和其他sql方言一样,都是保留字。

Hive基本数据类型:TINYINT,SMALLINT,INT,BIGINT,BOOLEAN,FLOAT,DOUBLE,STRING,BINARY,TIMESTAMP,DECIMAL,CHAR,VARCHAR,DATE

集合数据类型

hive中的列支持使用structmaparray集合数据类型。大多数关系型数据库中不支持这些集合数据类型,因为它们会破坏标准格式。关系型数据库中为实现集合数据类型是由多个表之间建立合适的外键关联来实现。在大数据系统中,使用集合类型的数据的好处在于提高数据的吞吐量,减少寻址次数来提高查询速度。

 

1 CREATE TABLE STUDENTINFO 2  3 ( 4  5 NAME STRING, 6  7 FAVORITE ARRAY
, 8 9 COURSE MAP
,10 11 ADDRESS STRUCT
12 13 )

 

查询语法:SELECT S.NAME,S.FAVORITE[0],S.COURSE["ENGLISH"],S.ADDRESS.CITY FROM STUDENTINFO S;

数据存储

1.首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。

2.其次,Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:表(Table),外部表(External Table),分区(Partition),桶(Bucket)

3.Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 pvs,它在 HDFS 中的路径为:/wh/pvs,其中,wh 是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的 Table 数据(不包括 External Table)都保存在这个目录中。

4.Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。例如:pvs 表中包含 ds 和 city 两个 Partition,则对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA

5.Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00000hash 值为 20 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00020

6.External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组织上是相同的,而实际数据的存储则有较大的差异。

注意:

Table 的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。

External Table 只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在 LOCATION 后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个 External Table 时,仅删除元数据,表中的数据不会真正被删除。

 

转载于:https://www.cnblogs.com/BaiYiShaoNian/p/5060132.html

你可能感兴趣的文章
oracle中anyData数据类型的使用实例
查看>>
C++对vector里面的元素排序及取任意重叠区间
查看>>
软件测试——性能测试总结
查看>>
12.4站立会议
查看>>
Java Concurrentmodificationexception异常原因和解决方法
查看>>
客户端访问浏览器的流程
查看>>
codeforces水题100道 第二十二题 Codeforces Beta Round #89 (Div. 2) A. String Task (strings)
查看>>
c++||template
查看>>
[BZOJ 5323][Jxoi2018]游戏
查看>>
编程面试的10大算法概念汇总
查看>>
Vue
查看>>
python-三级菜单和购物车程序
查看>>
条件断点 符号断点
查看>>
VMware12 + Ubuntu16.04 虚拟磁盘扩容
查看>>
水平垂直居中
查看>>
MySQL简介
查看>>
设计模式之桥接模式(Bridge)
查看>>
jquery的$(document).ready()和onload的加载顺序
查看>>
Python Web框架Django (五)
查看>>
.net学习之继承、里氏替换原则LSP、虚方法、多态、抽象类、Equals方法、接口、装箱拆箱、字符串------(转)...
查看>>